OSU Engineers Discover Clean Fossil Fuel Solution

Engineers at The Ohio State University are developing technologies that have the potential to economically convert fossil fuels and biomass into useful products including electricity without emitting carbon dioxide to the atmosphere.

In the first of two papers published in the journal Energy & Environmental Science, the engineers report that they’ve devised a process that transforms shale gas into products such as methanol and gasoline—all while consuming carbon dioxide. This process can also be applied to coal and biomass to produce useful products.

Under certain conditions, the technology consumes all the carbon dioxide it produces plus additional carbon dioxide from an outside source.

Finally, the same team has discovered and patented a way with the potential to lower the capital costs in producing a fuel gas called synthesis gas, or “syngas,” by about 50 percent over the traditional technology. The technology, known as chemical looping, uses metal oxide particles in high-pressure reactors to “burn” fossil fuels and biomass without the presence of oxygen in the air. The metal oxide provides the oxygen for the reaction.

Chemical looping is capable of acting as a stopgap technology that can provide clean electricity until renewable energies such as solar and wind become both widely available and affordable, the engineers said.

Another advancement involves the engineers’ development of chemical looping for production of syngas, which in turn provides the building blocks for a host of other useful products including ammonia, plastics or even carbon fibers.

This is where the technology really gets interesting: It provides a potential industrial use for carbon dioxide as a raw material for producing useful, everyday products.